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a b s t r a c t

The first-principles calculations were applied to investigate the structural, elastic constants of Zr2Al
alloy with increasing pressure. These properties are based on the plane wave pseudopotential density
functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and
correlation. The result of the heat of formation of Zr2Al crystal investigated is in excellent consistent
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with results from other study. The anisotropy, the shear modulus, and Young’s modulus for the ideal
polycrystalline Zr2Al are also studied. It is found that (higher) pressure can significantly improve the
ductility of Zr2Al. Moreover, the elastic constants of Zr2Al increase monotonically and the anisotropies
decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed
to the density of states at the Fermi level.

© 2010 Elsevier B.V. All rights reserved.

r2Al

. Introduction

Group IV transition metal zirconium and its alloys are cru-
ial materials for applications in the fields of aerospace, medical,
nd nuclear, where their high strength, light weight, corrosion
esistance, and the nuclear absorption cross sections are of prime
nterest. Consequently, these materials are of scientific and tech-
ological interest in recent years [1]. A large number of theories
nd experiments on the glass-forming ability of binary or tri-
ary zirconium-based alloys such as Zr–Cu–Ti (Ni, Al, Be, Nb, Fe)
2–10] have been reported. These zirconium-based alloys have
een demonstrated to exhibit intriguing glass-forming ability and

re currently the major species of bulk metallic glasses with
xtraordinary thermomechanical and electronomagnetic proper-
ies.

∗ Corresponding author at: College of Life Science and Biotechnology and Research
enter Astronautics and Shanghai Jiaotong University, Shanghai 200240, China.
∗∗ Corresponding author at: College of Physical Science and Technology, Sichuan
niversity, Chengdu 610064, China.

E-mail addresses: dqwei@sjtu.edu.cn (D.-Q. Wei), x.r.chen@tom.com
X.-R. Chen).

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2010.09.084
Particularly, Zr–Al based amorphous and nanocrystalline alloys
have been paid much attention due to their high strength, high duc-
tility, and high glass-forming ability [11,12]. Several investigations
[13–16] on the solid solubility of Al in Zr were also reported. Wang
et al. [17] analyzed the phase equilibrium and thermodynamic data
of the Al–Zr using thermodynamic models. Alatalo et al. [18] calcu-
lated the heats of formation of a number of different Al–Zr possible
structures using both all-electron and pseudopotential methods.
Generally, the mechanical properties of the alloys can be greatly
improved by controlling the crystallographic phases present, opti-
mizing the microstructure of the material and external pressure.
For example, the elastic constants play an important role in deter-
mining the strength of the alloy materials and the response of the
crystal to external forces, which is characterized by bulk modulus,
shear modulus, Young’s modulus and Poisson’s ratio, and elas-
tic properties also related thermodynamically to the specific heat,
thermal expansion, Debye temperature, and the Grüneisen param-
eter. Especially, bulk modulus, shear modulus and their derivatives
as a function of pressure are also important parameters in under-

standing the structural behavior and physical properties of the alloy
materials under compression. Although a large number of publica-
tions studied the metallic glasses based on alloy including Zr2Al
compound, the elastic properties and electronic band structure of
Zr2Al crystal under high pressure are rarely reported up to now.

dx.doi.org/10.1016/j.jallcom.2010.09.084
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:dqwei@sjtu.edu.cn
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herefore, investigating the Zr2Al crystal.is essential for further
nderstanding the metallic glasses.

In this study, we presented the first-principles calculations
o investigate the properties of binary Zr2Al crystal under high
ressure. Lattice parameters, elastic properties and electronic
and structure are investigated by applying the first-principles
lane-wave method within the generalized gradient approxima-
ion correction (GGA) in the frame of density functional theory [19]
ased on the Cambridge Serial Total Energy Package (CASTEP) pro-
ram [20,21]. In Section 2, the calculation method will be presented
n detail. The theoretical result and some discussion are given in
ection 3. Finally, conclusions are summarized.

. Method of calculation

.1. Total energy electronic structure calculations

The density functional theory (DFT) [22,23] has successfully
een applied to the first-principles calculations of ground-state
roperties of various materials from the theoretical point of view
24,25]. In the DFT method, the GGA is widely used for the first-
rinciples prediction of the ground-state properties of crystalline
olids, and is known to give many of these properties to high
ccuracy. It can be successfully applied to estimate the accurate
heoretical values of static structural properties, phonon spectra,
rystal stability, and pressure-induced phase transformations in
any solids. To investigate the elastic constants of a material the-

retically from the first principles, the total energy of a crystal is
alculated as a function of the unit cell deformations, which deals
ith the elastic constants under considerations [26].

In present calculation, we apply the GGA for the exchange-
orrelation functional in the scheme of Perdew–Burke–Ernzerhof
PBE) [19] to describe the exchange and correlation potential.
seudo-atom calculations are performed for Zr (4d25s2) and Al
3s23p1). The electronic wave functions are expanded in a plane
ave basis set with energy cut-off of 360 eV. The K-space integra-

ion has been performed using 9 × 9 × 8 k-points in the irreducible
rillouin zone, where the self-consistent convergence of the total
nergy is 1.0 × 10−6 eV/Atom. This structure has been optimized by
sing the BFGS algorithm [27] for pressures ranging from −10 GPa
o 100 GPa. We choose the same parameters in our electronic struc-
ure calculations and elastic properties calculations.

.2. Elastic properties

The elastic constants are calculated as the second derivatives
f the internal energy with respect to the strain tensor. They are
efined by a Taylor expansion of the total energy E(V, ı) for the
ystem with respect to a small strain ı of the lattice primitive cell
olume V. The energy of a strained system is as follows [28,29]:

(V, ı) = E(V0, 0) + V0

⎛
⎝∑

i

�i�iıi + 1
2

∑
ij

Cijıi�jıj

⎞
⎠ (1)

here E(V, 0) is the energy of the unstrained system with equilib-
ium volume V0, �i is an element in the stress tensor and �i is a
actor to take care of Voigt index [29].

There are five independent components of the elastic tensor
or Zr2Al, i.e., C11, C12, C13, C33 and C44. For an hcp crystal under
ressure, the generalized mechanical stability criteria [30] are as

ollows:

12 > 0, C33 > 0; C66 = C11 − C12

2
> 0, C44 > 0 (2)

C11 + C12) C33 − 2C2
13 > 0 (3)
ompounds 509 (2011) 769–774

The mechanical anisotropy of Zr2Al can be calculated by using the
bulk moduli Ba along the a-axis and Bc along the c-axis, which are
defined as [31,32]:

Ba = a
dP

da
= �

2 + ˛
(4)

Bc = c
dP

dc
= Ba

˛
(5)

� = 2(C11 + C12) + 4C13˛ + C33˛2 (6)

˛ = C11 + C12 − 2C13

C33 − C13
(7)

where ˛ is defined as the relative change of the c-axis as a function
of the deformation of the a-axis. By the above-mentioned equa-
tions, the linear bulk modulus can be obtained from our calculated
single crystal elastic constants.

The Voigt and Reuss assumptions [33] result in the theoretical
maximum and minimum values of the isotropic elastic modulus,
respectively. The bulk modulus is an invariant by rotation and it
does not depend on the crystal orientation. Therefore, the bulk
modulus B for hexagonal Zr2Al is presented by:

B = BV = BR = 1
9

[2(C11 + C12) + C33 + 4C13] (8)

The upper and the lower bounds for the shear modulus of
polycrystalline Zr2Al aggregate according to Voigt and Reuss
approximations are defined as follows:

GV = 1
30

(C11 + C12 + 2C33 − 4C13 + 12C44 + 12C66) (9)

GR = 5
2

[(C11 + C12)C33 − 2C13
2]C66C44

3BV C66C44 + [(C11 + C12)C33 − 2C13
2](C66 + C44)

(10)

where C66 = 1/2(C11 − C12), and the Voigt–Reuss–Hill (VRH) aver-
ages for shear modulus (G) is defined as [34,35]:

G = GV + GR

2
(11)

The polycrystalline elastic modulus (E) and the Poisson ratio (�)
are then computed from these values using the following equa-
tions:

E = 9BG

3B + G
, � = 3B − 2G

2(3B + G)
(12)

3. Results and discussion

3.1. Structural properties and pressure effects

Zr2Al is a hexagonal close-packed (hcp) structure with space
group P63/mmc. Two Al atoms occupy the 2c Wyckoff site (1/3, 2/3,
1/4) and (2/3, 1/3, 3/4) and four Zr atoms occupy the 2a site (0, 0, 0),
(0, 0, 1/2) and 2d site (1/3, 2/3, 3/4), (2/3, 1/3, 1/4) in a six atoms unit
cell, respectively. Since the experimental lattice parameter ratio c/a
is 1.211, we thus calculate a series of different c/a ratios from 1.196
to 1.228, with an interval of 0.004. For each c/a, a series of different
values of lattice constant a are set to calculate the total energies
E and the corresponding volumes V, and then an energy–volume
(E–V) curve can be obtained by fitting the calculated E–V data to
the Brich–Murnaghan of state (EOS) [36]:[

1−B′ ]

�E(V) = E − E0 = B0V0

Vn

B′
0

+ 1
1 − B′

0
+ V 0

n

B′
0(B′

0 − 1)
(13)

where E0 is the equilibrium energy at the zero pressure. The pres-
sure P versus the normalized volume Vn is obtained through the
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ig. 1. The normalized lattice parameters a/a0, c/c0 and primitive cell volume V/V0

s a function of pressure P for Zr2Al at 0 K.

ollowing thermodynamic equation:

= − dE

dV
= B0

B
′
0

[
V

−B′
0

n − 1
]

(14)

t is found that the most stable structure of Zr2Al at P = 0 and T = 0
orresponds to the ratio c/a of 1.208, and the calculated the zero
ressure bulk modulus B0 and its pressure derivative B0

′ are listed
n Table 1, together with other experimental data [37], and we also
ist the bulk modulus B0 and its pressure derivative B0

′ results of
he Zr2Al with CdI2 structure [38] for comparison due to lacking of
xperimental or other theoretical results. These results are in excel-
ent agreement with the experimental data [37] and other structure
heoretical results [38].

We also investigate the heat of formation of Zr2Al crystal. The
eat of formation of Zr2Al crystal calculated is −0.35 eV/atom
see Table 1). Unfortunately, there are no experimental values but
t is in excellent consistent with results from other study [18]

hich obtains a value of −0.35 eV/atom by LASTO method and
0.37 eV/Aatom by PWPP method.

Fig. 1 shows the pressure dependence of the normalized lat-
ice parameters a/a0, c/c0 and primitive cell volume V/V0 in the

ange of from −10 to 100 GPa (where a0, c0 and V0 are the zero
ressure equilibrium structural parameters). As pressure increas-

ng, the equilibrium ratio c/c0 decreases more quickly than a/a0,
ndicating that the compression along the c-axis is much larger than
hat along the a-axis. This result is in agreement with the compar-
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ig. 2. The relation of the bulk modulus Ba and Bc with pressure along the a- and
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Pressure(GPa)

Fig. 3. The calculated elastic constants Cij as a function of pressure P.

atively weaker (Al–Zr) bonds which determine the c-axis length.
Unfortunately, there are no experimental data compared with our
data.

3.2. Elastic properties of the Zr2Al

Elastic properties of the materials are very important because
they related to various fundamental solid-state properties, such as
equation of state (EOS), thermodynamically to the specific heat,
thermal expansion, Debye temperature, melting point, Grüneisen
parameter and so on. The elastic modulus determines the response
of the crystal to external forces, as characterized by bulk mod-
ulus, shear modulus and Young’s modulus, and plays a role in
determining the strength of the materials. Table 2 presents the
elastic constants of Zr2Al at 0 K and 0 GPa. Since there is cur-
rently no experimental measurement of elastic constants, we show
the experimental and theoretical elastic constants of Al3Zr (DO23)
[38,39], Zr [38,40,41] and Al [38,40,41] at zero pressure in Table 2
for comparison. The mechanical anisotropy of Zr2Al can be cal-
culated using the bulk moduli along the a- and c-axes, Ba and
Bc by Eqs. (4)–(7), the calculated Ba and Bc at zero pressure are
also shown in Table 2. The ratio Ba/Bc of Zr2Al is 1.17, which is
smaller than these of ZrB (1.22), TiB (1.54) and NbB (1.43), indi-
2 2 2
cating the stronger chemical bonding for Zr2Al. The change of Ba

and Bc with pressure are shown in Fig. 2. It can be seen that the
ratio of Ba/Bc is decreasing as the pressure increases, indicating the
mechanical behavior of Zr2Al under zero pressure is of anisotropy

0 20 40 60 80 100
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

G
/B

P(GPa)

Fig. 4. The calculated quotient of G/B plotted as a function of pressure P.
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Table 1
The calculated lattice parameters a, c, c/a, equilibrium volume V0, formation energy �E, bulk modulus B0 and its pressure derivative B0

′ compared with experimental data
and other theoretical results.

a (Å) c (Å) c/a V0 (Å3/atom) �E (eV/atom) B0 (GPa) B0
′

Present work 4.908 5.929 1.208 20.61 −0.35 102.16 3.695
Exp. [37] 4.894 5.928 1.211 20.49 – – –
Ref. [38] – – – 20.38 – 98.10 –
Ref. [18] – – – – −0.35 (LASTO)
−0.37 (PWPP) – –

Table 2
Five elastic constants Cij (GPa) of Zr2Al and the bulk moduli Ba and Bc (GPa) at 0 GPa and 0 K.

C11 C12 C13 C33 C44 Ba Bc

Present 178.3 85.4 51.2 189.2 57.7 323 276
Ref. [38] Al3Zr (DO23) 215.3 54.1 33.3 228.2 103.2 – –
Exp. [39] Al3Zr (DO23) 208.8 70.5 49.1 208.3 87.2 – –
Ref. [38] Zr 153.1 63.4 76.5 171.2 22.4 – –
Exp. [40,41] Zr (hcp) 155.4 67.2 64.6 172.5 36.3 – –
Ref. [39] Al (fcc) 101.5 70.4 – – 31.7 – –
Exp. [40,42] Al (fcc) 114.3 61.9 – – 31.6
Exp. [43] ZrB – – – – – 772 635

a
i

F
m
i
c
fi
B
l
e
s

m
r
o
t

2

Exp. [44] TiB2 – – –
Refs. [31,45] NbB2 – – –

nd the anisotropy will gradually weaken as the applied pressure
ncreases.

The elastic constants as a function of pressure are shown in
ig. 3. It is found that the five independent elastic constants increase
onotonically with pressure. C11 and C33 vary rapidly as pressure

ncreases, C13 and C12 becomes moderate. However, C44 increases
omparatively slowly with pressure. If this structure is stable, the
ve independent elastic constants should satisfy the well-known
orn stability criteria [30], i.e., Eqs. (2) and (3). Fig. 3 shows excel-

ent satisfaction of the calculated elastic constants of Zr2Al to these
quations and hence in our calculation, the Zr2Al is mechanically
table at pressure up to 100 GPa.
The elastic moduli including the Yong’s modulus E, the bulk
odulus B and the shear modulus G can affect the quality of mate-

ials. As the bulk modulus B is nearly relative to the cohesive energy
r bonding energy of atoms in crystals, it is used as a measure
o describe the average atomic bond strength [46]. Moreover, the
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shear modulus G is the important parameter related to the hardness
of a material [47]. The calculated polycrystalline elastic modulus
and bulk modulus are shown in Table 3. Generally speaking, the
larger the moduli, the harder the materials. It can be seen that
from Table 3 that increasing pressure can improve the materials
hardness.

Pugh [48] proposed the quotient of shear to bulk modulus of
polycrystalline phases (G/B) by considering that the shear modulus
G represents the resistance to plastic deformation, while the bulk
modulus B represents the resistance to fracture. A high G/B ratio is
associated with brittleness, while a low value corresponds to ductil-
ity. The critical value which separates ductile and brittle materials

is about 0.57. If G/B < 0.57, the material exhibits in a ductile manner;
otherwise, the material behaves in a brittle manner. Table 3 lists the
values of G/B and Fig. 4 shows G/B as a function of pressure, respec-
tively. In this study, the calculated value of G/B at 0 K and 0 GPa is
0.549, describing this material as ductile, while with the applied
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Table 3
The Yong’s modulus E (GPa), shear modulus G (GPa) and bulk modulus B (GPa) at
various pressures.

P (GPa) Ba Bc B G E G/B

−10 200 164 62 39 96 0.629
0 323 276 102 56 142 0.549

10 434 376 138 69 178 0.500
20 531 475 171 80 207 0.468
30 620 560 200 88 231 0.44
40 705 652 229 96 252 0.419
50 792 744 259 103 273 0.398
60 866 836 285 108 288 0.379
70 945 930 313 112 299 0.358
80 1023 1026 341 115 311 0.337
90 1102 1119 369 120 324 0.325

100 1184 1204 397 125 340 0.315
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Fig. 6. The density of state of Zr and Al in Zr2Al.

ressure increasing, the values of G/B is much more smaller, that is
o say, pressure can improve the ductility of Zr2Al.

.3. Band structure and DOS of Zr2Al

Band structure and the partial density of state of Zr2Al are shown
n Fig. 5. From the band structure, it can be seen that the low-lying
wo bands are mainly Al s bands and the conduction bands are
ybridized bands of Zr s, Zr d and Al p orbitals. The lower bands

n conduction state are mainly due to Zr s electrons, and above this
cluster of several bands is present, which are mainly contributed
y Zr d and Al p orbitals. The bands which cross the Fermi level (EF)
re mainly the nonbonding states of the Zr d orbitals. Consequently,
he major contribution to the density of states at the Fermi level is
rom Zr d electrons.

The partial density of state of Zr, Al in Zr2Al is presented in Fig. 6.
y analysis of the partial density of state (PDOS), it can be found that
l s electrons in Zr2Al are localized and naturally do not participate

n bonding. The highest peak appearing in the DOS curve is due to
he bonding states which arise from the hybridization of Al p and Zr
orbitals. The sharp peak in the vicinity of the Fermi level is mainly
ue to the nonbonding states of the Zr d electrons, and therefore
he physical properties of this compound could be mainly governed
y Zr d electrons.

. Conclusions
A detailed investigation has been performed on the structure,
lastic properties and elastic anisotropy of Zr2Al in the hcp struc-
ure using density functional theory method with the ultrasoft
seudopotential scheme in the frame of the generalized gradient
pproximation (GGA) under high pressure. The optimized lattice

[

[
[
[
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parameters are in very good agreement with the experimental
data. We also investigate the heat of formation of Zr2Al crystal
and the result is in excellent consistent with results from other
study. The calculated elastic constants and the bulk moduli along
the crystallographic axes increase with increasing pressure. The
ideal polycrystalline aggregates bulk modulus, shear modulus, and
Young’s modulus are investigated by Hill’s approximation. From
the quotient of shear to bulk modulus of polycrystalline phases
(G/B), it is seen that Zr2Al is a brittle system at low pressures
and becomes ductile at higher pressures. Moreover, the ductility
becomes much stronger with pressure increasing, that is to say,
pressure can improve the ductility of Zr2Al. Lastly, by analysis of
band structure and the partial density of state (PDOS) of Zr2Al, it
is found that the bands which cross the Fermi level (EF) are mainly
the nonbonding states of the Zr d orbitals, therefore, the major con-
tribution to the density of states at the Fermi level is from Zr d
electrons.
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Y. Yokoyama, J. Dolinšek, J. Alloys Compd. 504 (2010) 16–21.
10] J. Guo, Y. Liu, P.X. Fan, H.X. Qu, T. Quan, J. Alloys Compd. 495 (2010) 50.
11] A. Inoue, T. Zhang, M.W. Chen, T. Sakurai, J. Saida, M. Matsushita, J. Mater. Res.

15 (2000) 2195.
12] H. Yang, K.Y. Lim, Y. Li, J. Alloys Compd. 489 (2010) 183–187.
13] A. Peruzzi, J. Nucl. Mater. 186 (1992) 89.
14] S.N. Tiwari, K. Tangri, J. Nucl. Mater. 34 (1970) 92–96.
15] E.M. Schulson, D.H. McColl, V.C. Ling, Ref’mement of the Zr/Zr2Al duplex

structure in Zr-7.6 to -9.0 wt.% A1 Ingots, Chalk River Nuclear Laboratories,
AECL-5176, Chalk River, Ontario, Canada, 1975.

16] R.J. Kematick, H.F. Franzen, J. Solid State Chem. 54 (1984) 226.
17] T. Wang, Z. Jin, J. Zhao, J. Phase Equilibria 22 (2001) 544.
18] M. Alatalo, M. Weinert, R.E. Watson, Phys. Rev. B 57 (1998) R2009.
19] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
20] M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys.

64 (1992) 1045.
21] V. Milan, B. Winker, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H.

Nobes, Int. J. Quantum Chem. 77 (2002) 85.
22] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
23] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
24] R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61 (1989) 689.
25] R.M. Dreizler, E.K.U. Gross, Density Functional Theory—An Approach to the

Quantum Many-body Problem, Springer-Verlag, Berlin, 1990.
26] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P.C. Schmidt,
Intermetallics 11 (2003) 23.
27] B.G. Pfrommer, M. CÔté, S.G. Louie, M.L. Cohen, J. Comp. Physiol. 131 (1997)

233.
28] H.Z. Guo, X.R. Chen, L.C. Cai, J. Zhu, J. Gao, Solid State Commun. 134 (2005) 787.
29] L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51 (1995) 17431.
30] M. Born, Proc. Cambridge Philos. Soc. 36 (1940) 160.



7 s and C

[

[
[

[
[
[
[
[
[
[

[
[
[

[

[45] A.K.M.A. Islam, A.S. Sikder, F.N. Islam, Phys. Lett. A. 350 (2006) 288.
74 X.-L. Yuan et al. / Journal of Alloy

31] A.S. Sikder, A.K.M.A. Islam, M. Nuruzzaman, F.N. Islam, Solid State Commun.
137 (2006) 253.

32] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Appl. Phys. 84 (1998) 4891.
33] W. Voigt, Lehrbook, Der Kristallphysik, 2nd ed. (Teubner, Leipsig, 1928); A.

Reuss, Z. Angew. Math. Mech. 9 (1929) 49.
34] L.L. Sun, Y. Cheng, G.F. Ji, J. At. Mol. Sci. 1 (2010) 143.
35] R. Hill, Proc. R. Soc. Lond. Ser. A 65 (1952) 350.

36] F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244.
37] C.G. Wilson, D. Sams, Acta. Cryst. 14 (1961) 71.
38] E. Clouet, J.M. Sanchez, C. Sighi, Phys. Rev. B 65 (2002) 094105.
39] M. Nakamura, K. Kimura, J. Mater. Sci. 26 (1991) 2208.
40] R. Bechmann, R.F.S. Headmon, in: K.H. Hellwege, A.M. Hellwege (Eds.), Landolt-

Börnstein, vol. III/1, Springer, Berlin, 1996.

[
[

[

ompounds 509 (2011) 769–774

41] E.S. Fisher, C.J. Renken, Phys. Rev. 135 (1964) 482.
42] G.N. Kamm, G.A. Alers, J. Appl. Phys. 35 (1964) 327.
43] N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, M. Yamaguchi, S. Otani, J. Appl.

Phys. 93 (2003) 88.
44] P.S. Spoor, J.D. Maynard, M.J. Pan, D.J. Green, J.R. Hellmann, T. Tanaka, Appl.

Phys. Lett. 70 (1997) 1959.
46] K.A. Gschneidner, Solid State Phys. 16 (1964) 275.
47] I.N. Frantsevich, F.F. Voronor, S.A. Bokuta, in: I.N. Frantsevich (Ed.), Elastic con-

stants and elastic moduli of metals and insulators, Naukova Dumka, Kiev, 1983,
p. 60.

48] S.F. Pugh, Philos. Mag. 45 (1954) 823.


	The first-principles calculations for the elastic properties of Zr2Al under compression
	Introduction
	Method of calculation
	Total energy electronic structure calculations
	Elastic properties

	Results and discussion
	Structural properties and pressure effects
	Elastic properties of the Zr2Al
	Band structure and DOS of Zr2Al

	Conclusions
	Acknowledgments
	References


